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LET’S TALK ABOUT DATA ASSIMILATION

ARYA PAUL
INCOIS



If the astronomical observations and other quantities on which the 
computations of orbits is based, were absolutely correct, the elements also, 
whether deduced from three or four observations, would be strictly accurate 
(so far indeed as the motion is supposed to actually take place exactly 
according to the laws of Kepler), and therefore, if other observations were 
used, they might be confirmed, but not corrected. But since our 
measurements and observations are nothing more than approximations to 
truth, the same must be true of all calculations resting upon them, and the 
highest aim of all computation made concerning concrete phenomena must 
be to approximate, as nearly as practicable to the truth. But this can be 
accomplished in no other way than by a suitable combination of more 
observations than the number absolutely requisite for the determination of 
the unknown quantities. This problem can only be properly be undertaken 
when an approximate knowledge of the orbit has been already taken into 
account, which is afterwards to be corrected, so as to satisfy all the 
observations in the most accurate manner possible.

Gauss, 1809: Theoria Motus Corporum Coelestium
-1823: Theoria combinationis Observationum erroribus minimis
obnoxiae



Summary of Gauss’s idea

• Both model and observations are approximate.
• Truth is not known.
• The resulting analysis will also be approximate. 
• It’s better to have enough observations to over-determine the 

problem. 
• The model is used to provide a preliminary estimate.



Flowchart of Data Assimilation

Truth

NO CORRECTION CORRECTION



DATA ASSIMILATION

Finding maximum likelihood
(using Bayes’ Theorem)

Minimize the cost function
( Least square approach )

WHAT IS BAYES’ THEOREM ?



Bayes’ Theorem

P(A|B) = Probability of finding A given B
P(B|A) = Probability of finding B given A
P(A) = Probability of A with no knowledge of B
P(B) = Probability of B with no knowledge of A.
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Did you ever bet on horses ? 

Probability of Bolt winning = 5/12 = 41.7%
Probability of Fleetfoot winning = 7/12 = 58.3%

Now let's add a new factor into the calculation. It turns out that on 3 of Bolt's 
previous 5 wins, it had rained heavily before the race. However, it had rained only once 
on any of the days that he lost. It appears, therefore, that Bolt is a horse who likes 
'soft going', as the bookies say. On the day of the race in question, it is raining.

Given this new information ( raining ), what is the probability of Bolt winning ? 

Total Number of Races 12

Fleetfloot winning 7

Bolt winning 5

Ref : http://www.kevinboone.net/bayes.html



It’s raining Not raining

Bolt winning 3 2

Bolt losing 1 6

What we need to know is the probability of Bolt winning, given that it is raining ?

Like any other probability, we calculate it by dividing the number of times something 
happened, by the number of times if could have happened. 
We know that Bolt won on 3 occasions on which it rained, and there were 4 
rainy days in total. 
So Bolt's probability of winning, given that it is now raining, is 3 / 4, or 0.75, or 75%.

This is important information if you plan to bet — if it is raining you should 
back Bolt; if it is not, you should back Fleetfoot. 

The probability shifts from 41.7% to 75%. 



Revisiting Bayes’ Theorem

p(A|B) = p(B|A) p(A) / p(B) 

P(A|B) = Probability of finding A given B
P(B|A) = Probability of finding B given A
P(A) = Probability of A with no knowledge of B
P(B) = Probability of B with no knowledge of A.

P(A|B) = Probability of Bolt winning when it rains 
P(B|A) = Probability of raining when Bolt wins = 3/5
P(A) = Probability of Bolt winning = 5/12
P(B) = Probability of raining = 4/12
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What are the error characteristics ? 

• Unbiased model and observation error i.e.,

• Model and observation error are uncorrelated i.e.,

• Non-trivial error covariances i.e.,    
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What is x ?

What is H ? 

What is y ? 

BASICS
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( ) ( ) ( )xpxypyxp || ∝ Given observations, what is the best estimate of 
the state x. 

B is Gaussian

R is Gaussian

Presenter
Presentation Notes
P(y) is just the integral of p(y|x)p(x) which normalizes the numerator such that the expression integrates to 1. 



The cost function is parabolic and the minimization is done 
using steepest descent. 



POPULAR DATA ASSIMILATION METHODS

• KALMAN FILTER  -- B evolves according to model dynamics.

• 3D VAR – B is stationary.

• 4D VAR – B evolves within the time window of cost function minimization. 

• ENSEMBLE BASED KALMAN FILTER -- B is estimated from the ensembles.



What is the role of B ??



obs

Under what condition will the information at grid location 3 
propagate to other grid points ?
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B propagates information from one site to another !!! 



What is the relative significance of B & R ?
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Let’s estimate the temperature of Hyderabad. 
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Some more exercises 
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Suppose we observe a point in between two grid points. 
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Case 1: No cross-correlation between two grid points,             and   0=µ 1=α
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The analysis at grid point 1 is same as the analysis of the previous example
The analysis at grid point 2 is equal to the background. Observation had no effect.



Case 2: 0   ,1 ≠= µα
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Now the solution at grid point 2 is influenced by the observation. The role of 
Background error covariance is to spread information from one grid point to the
other. 



PRACTICAL ISSUES

COVARIANCE INFLATION IS NECESSARY !!!
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Idea of Localization

Assimilating distant observations leads to spurious correlations 



PRACTICAL APPLICATIONS IN INCOIS



System Comparison
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INCOIS GODAS LETKF-MOM

Model MOM4.0 MOM4.1

Resolution 0.5 degree in zonal
0.25 degree in meridional 
between 10S & 10N.

0.5 degree in zonal
0.25 degree in meridional 
between 10S & 10N.

No. of levels 40 40

Features • River RunOff ON
• Relaxed to REYNOLDS 

SST
• SSS not relaxed

• River RunOff OFF
• Relaxed to LETKF derived 

SST
• Relaxed to LETKF derived 

SSS

Assimilation Scheme 3D VAR LETKF with 56 ensemble 
members

Observations • In-situ temp & salinity • In-situ temp & salinity
• Altimeter
• L2 SST & L2 SSS

Initial Condition Well Trained 2003 IC pretended as 2010

Run Period 2002 onwards till date Jan 03, 2010 – June 15, 2010



Why Local Ensemble Transform Kalman Filter ( LETKF ) ?

31

• LETKF is a more advanced assimilation technique and has been proved to work better and faster than Ensemble 
Kalman Filter for the same number of ensemble members.

• LETKF can account for more growing modes in the local subspace thereby making it a potential better technique. 

In what sense is this indigenous ? 

• We are the first to assimilate L2 SST and L2 SSS in LETKF. ( Disclaimer : As far as we are aware of )

• Direct SST assimilation is degrading the vertical temperature profile.

• The algorithm that goes into the assimilation scheme.

Model Initial Condition Model Forecast

SST & SSS Analysis

L2 SST 
&

L2 SSS
Assimilation

Final Analysis

Model relaxed
to SST & SSS 
Analysis

In-situ temp, 
salt & 
altimeter
assimilation



Observations
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L2 SST

In-situ T & SL2 SSS

L2 SLA



TEMP Time Series Results
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TEMP Vertical Profiles
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SALT Time Series Results
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SALT Vertical Profiles
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SLA Correlations 
with AVISO
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SST Correlations with
REYNOLDS
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Free Model

LETKF-MOM

GODAS



Conclusions
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• LETKF-MOM performance is comparable to GODAS in many aspects even though it 
starts from a gross initial condition.

• SST assimilation is not good because of large R. Decrease R to get better assimilation.

• It’s premature to say whether LETKF can outperform GODAS. But it’s definitely 
promising.
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TAKE HOME MESSAGE

• The truth is not known. 

• Neither observation nor model is devoid of errors. 

• Assimilate these two to get a best estimate. 

• Estimating maximum likelihood = Minimizing cost function. 

• The model error covariance propagates information from 
one place to another.

• Covariance inflation is necessary for Ensemble based schemes. 

• Localize observations to get rid of spurious correlations. 
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